Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; : e202400564, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38525656

RESUMO

Within this work we have investigated spiro-based tetrathiafulvalenes (TTFs) obtained as mixtures of stereoisomers from racemic spiro[5.5]undeca-1,8-dien-3-one. Compared to previously described spiro-TTFs, enantiomeric and diastereoisomeric forms have been here separated by chiral HPLC and fully characterized both experimentally and theoretically. The two types of spiro-based chiral derivatives contain either one (2) or three (1) chiral centres out of each one is spiro-type. Experimental CD, supported by TD-DFT calculations, shows differences in the optical activity between the 1 and 2 and their intermediates. The low optical activity of 2 and 3 (spiro alone chirality) was attributed to the presence of two conformers in the solution (ax and eq) of opposite Cotton effect whereas in the case of 1 and 5 (spiro and stereogenic centres) the spiro chirality seems to be responsible of the Cotton effect in the high energy region whereas the R and S chirality in the low energy region. Racemic and enantiopure forms have been successfully used for the synthesis of charge transfer complexes with tetracyanoquinodimethane (TCNQ) based acceptors.

2.
Dalton Trans ; 53(10): 4805-4813, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38372362

RESUMO

An enlarged version of the ubiquitous tetrathiafulvalene-tetrabenzoic acid is described, with 4,4'-biphenyl moieties as spacers between the coordination moieties and the electroactive core. The obtained rectangular ligand has a 14 × 22 Å2 size and is combined with Zn(II) under solvothermal conditions to yield a coordination polymer endowed with large cavities of ca. 15 × 11 Å2/10 × 10 Å2. The topology of the material is discussed in detail using the Points of Extension and Metals (PE&M) or the Straight-rod (STR) representation, and the sqc1121 or tfo topological type of the structure is observed, respectively. Its stability towards solvent removal and electrical properties are discussed. The material does not present any permanent porosity upon desolvation according to nitrogen sorption measurements at 77 K. Nevertheless, a significant increase in conductivity is observed on compressed pellets of the material upon post-synthetic oxidation with iodine. Raman spectroscopy combined with density functional theory (DFT) calculations has been used to characterize the oxidation state of tetrakis(4-carboxylic acid biphenyl)tetrathiafulvalene for coordination polymers.

3.
Small ; 19(39): e2302240, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37231556

RESUMO

Manipulation of long-range order in 2D van der Waals (vdW) magnetic materials (e.g., CrI3 , CrSiTe3 ,etc.), exfoliated in few-atomic layer, can be achieved via application of electric field, mechanical-constraint, interface engineering, or even by chemical substitution/doping. Usually, active surface oxidation due to the exposure in the ambient condition and hydrolysis in the presence of water/moisture causes degradation in magnetic nanosheets that, in turn, affects the nanoelectronic /spintronic device performance. Counterintuitively, the current study reveals that exposure to the air at ambient atmosphere results in advent of a stable nonlayered secondary ferromagnetic phase in the form of Cr2 Te3 (TC2 ≈160 K) in the parent vdW magnetic semiconductor Cr2 Ge2 Te6 (TC1 ≈69 K). The coexistence of the two ferromagnetic phases in the time elapsed bulk crystal is confirmed through systematic investigation of crystal structure along with detailed dc/ac magnetic susceptibility, specific heat, and magneto-transport measurement. To capture the concurrence of the two ferromagnetic phases in a single material, Ginzburg-Landau theory with two independent order parameters (as magnetization) with a coupling term can be introduced. In contrast to the rather common poor environmental stability of the vdW magnets, the results open possibilities of finding air-stable novel materials having multiple magnetic phases.

4.
Chemistry ; 29(8): e202203138, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36349992

RESUMO

Novel coordination polymers embedding electroactive moieties present a high interest in the development of porous conducting materials. While tetrathiafulvalene (TTF) based metal-organic frameworks were reported to yield through-space conducting frameworks, the use of S-enriched scaffolds remains elusive in this field. Herein is reported the employment of bis(vinylenedithio)-tetrathiafulvalene (BVDT-TTF) functionalized with pyridine coordinating moieties in coordination polymers. Its combination with various transition metals yielded four isostructural networks, whose conductivity increased upon chemical oxidation with iodine. The oxidation was confirmed in a single-crystal to single-crystal X-ray diffraction experiment for the Cd(II) coordination polymer. Raman spectroscopy measurements and DFT calculations confirmed the oxidation state of the bulk materials, and band structure calculations assessed the ground state as an electronically localized antiferromagnetic state, while the conduction occurs in a 2D manner. These results are shedding light to comprehend how to improve through-space conductivity thanks to sulfur enriched ligands.

5.
Molecules ; 27(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36296517

RESUMO

Chiral bis(TTF) diamides have been obtained in good yields (54-74%) from 1,2-cyclohexane-diamine and the corresponding TTF acyl chlorides. The (R,R)-1 and (S,S)-1 enantiomers have been characterized by circular dichroism and the racemic form by single-crystal X-ray diffraction. The neutral racemic bis(TTF)-diamide shows the formation of a pincer-like framework in the solid state, thanks to the intramolecular S···S interactions. The chemical oxidation in a solution using FeCl3 provides stable oxidized species, while the electrocrystallization experiments provided radical cation salts. In particular, single-crystal resistivity measurements on the racemic donor with AsF6- as a counterion demonstrate semiconductor behavior in this material. The DFT and TD-DFT calculations support the structural and chiroptical features of these new chiral TTF donors.

6.
J Phys Chem C Nanomater Interfaces ; 126(4): 1890-1900, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35145572

RESUMO

We report structural, transport, and optical properties and electronic structure calculations of the δ'-(BEDT-TTF)2CF3CF2SO3 (BEDT-TTF = bis(ethylenedithio)tetrathiafulvalene) organic conductor that has been synthesized by electrocrystallization. Electronic structure calculations demonstrate the quasi-one-dimensional Fermi surfaces of the compound, while the optical spectra are characteristic for a dimer-Mott insulator. The single-crystal X-ray diffraction measurements reveal the structural phase transition at 200 K from the ambient-temperature monoclinic P21/m phase to the low-temperature orthorhombic Pca21 phase, while the resistivity measurements clearly show the first order semiconductor-semiconductor transition at the same temperature. This transition is accompanied by charge-ordering as it is confirmed by splitting of charge-sensitive vibrational modes observed in the Raman and infrared spectra. The horizontal stripe charge-order pattern is suggested based on the crystal structure, band structure calculations, and optical spectra.

7.
Adv Mater ; 32(36): e2002811, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32715564

RESUMO

The relationship between chirality and superconductivity is an intriguing question. The two enantiomeric crystalline radical cation salts κ-[(S,S)-DM-BEDT-TTF]2 ClO4 and κ-[(R,R)-DM-BEDT-TTF]2 ClO4 , showing κ-type arrangement of the organic layers, are investigated in search for superconducting chiral molecular materials following a 1992 report indicating the occurrence of a superconducting transition in the former compound. While the initial interpretation is presently challenged through in-depth temperature and pressure dependent single crystal resistivity measurements combined with band structure calculations, the two chiral conductors show metal like behavior with room temperature conductivities of 10-30 S cm-1 at ambient pressure and stabilization of the metallic state down to the lowest temperatures under moderate pressures. Moreover, their structural and theoretical investigations reveal an original feature, namely the existence of two different κ layers with 1D and 2D electronic dimensionality, respectively, as a consequence of an interlayer charge transfer. The resistivity drop observed for one sample below 1 K and insensitive to magnetic field, possibly results from mixing in-plane and out-of-plane contributions to the measured resistance and suggests current induced charge order melting. This feature contradicts the occurrence of superconductivity in these chiral molecular conductors and leaves open the discovery of the first chiral molecular superconductors.

8.
Chem Sci ; 11(37): 10078-10091, 2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34094269

RESUMO

The occurrence of isostructural conducting radical cation salts of diversely substituted tetrathiafulvalene (TTF) precursors with the same anion is most often limited to very similar derivatives such as tetramethyl-tetrathiafulvalene (TMTTF) and tetramethyl-tetraselenafulvalene (TMTSF). Here we show that the use of the oxo-bis[pentafluorotantalate(v)] dianion [Ta2F10O]2- affords upon electrocrystallization of TMTTF, TMTSF, bis(ethylenedithio)-tetrathiafulvalene (BEDT-TTF), racemic dimethyl-ethylenedithio-tetrathiafulvalene ((rac)-DM-EDT-TTF), and enantiopure (S,S)-DM-EDT-TTF a series of mixed valence crystalline radical cation salts with the same 3 : 1 stoichiometry. The donor layers show similar features in the five materials, such as alternation of trimeric units within stacks which arrange in parallel columns of ß-type. The anion arranges either parallel or perpendicular to the stack direction and establishes numerous intermolecular CH⋯F hydrogen bonds. Thus, the [Ta2F10O]2- dianion, most likely because of its shape and propensity to engage in hydrogen bonding, is the first one to be able to induce the same type of structural arrangement for a broad series of different donors, a result which is important in the crystal engineering of molecular conductors. All the compounds are band gap semiconductors, according to single crystal resistivity measurements and extended Hückel band structure calculations. The room temperature conductivity values are relatively high, i.e. 0.25-1.1 S cm-1, except for the TMTTF salt, whose conductivity value is two orders of magnitude smaller than its isostructural TMTSF counterpart, in agreement with the band gap energy value. As a general feature of these materials, variations in the inter- and intra-trimer interactions modulate their band structure, i.e. energy dispersion and band gaps. The preparation of this series of radical cation salts with a sturdy 3 : 1 stoichiometry might question previous assignments of the anion as [Ta2F11]- in radical cation salts of TMTSF and BEDT-TTF.

9.
Inorg Chem ; 58(22): 15359-15370, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31657914

RESUMO

Electrocrystallization of the bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) organic donor in the presence of the [Fe(ClCNAn)3]3- tris(chlorocyananilato)ferrate(III) paramagnetic anion in different stoichiometric ratios and solvent mixtures afforded two different hybrid systems formulated as [BEDT-TTF]4[Fe(ClCNAn)3]·3H2O (1) and [BEDT-TTF]5[Fe(ClCNAn)3]2·2CH3CN (2) (An = anilato). Compounds 1 and 2 present unusual structures without the typical segregated organic and inorganic layers, where layers of 1 are formed by Λ and Δ enantiomers of the anionic paramagnetic complex together with mixed-valence BEDT-TTF tetramers, while layers of 2 are formed by Λ and Δ enantiomers of the paramagnetic complex together with dicationic BEDT-TTF dimers and monomers. Compounds 1 and 2 show semiconducting behaviors with room-temperature conductivities of ca. 6 × 10-3 S cm-1 (ambient pressure) and 1 × 10-3 S cm-1 (under applied pressure of 12.1 GPa), respectively, due to strong dimerization between the donors. Magnetic measurements performed on compound 1 indicate weak antiferromagnetic coupling between high-spin FeIII (SFe = 5/2) and mixed-valence radical cation diyads (BEDT-TTF)2+ (Srad = 1/2) mediated by the anilate ligands, together with an important Pauli paramagnetism typical for conducting systems.

10.
J Am Chem Soc ; 140(39): 12611-12621, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30198265

RESUMO

The mixed-valence FeIIFeIII 2D coordination polymer formulated as [TAG][FeIIFeIII(ClCNAn)3]·(solvate) 1 (TAG = tris(amino)-guanidinium, ClCNAn2- = chlorocyanoanilate dianionic ligand) crystallized in the polar trigonal space group P3. In the solid-state structure, determined both at 150 and at 10 K, anionic 2D honeycomb layers [FeIIFeIII(ClCNAn)3]- establish in the ab plane, with an intralayer metal-metal distance of 7.860 Å, alternating with cationic layers of TAG. The similar Fe-O distances suggest electron delocalization and an average oxidation state of +2.5 for each Fe center. The cation imposes its C3 symmetry to the structure and engages in intermolecular N-H···Cl hydrogen bonding with the ligand. Magnetic susceptibility characterization indicates magnetic ordering below 4 K and the presence of a hysteresis loop at 2 K with a coercive field of 60 Oe. Mössbauer measurements are in agreement with the existence of Fe(+2.5) ions at RT and statistic charge localization at 10 K. The compound shows semiconducting behavior with the in-plane conductivity of 2 × 10-3 S/cm, 3 orders of magnitude higher than the perpendicular one. A small-polaron hopping model has been applied to a series of oxalate-type FeIIFeIII 2D coordination polymers, providing a clear explanation on the much higher conductivity of the anilate-based systems than the oxalate ones.

11.
Small ; 14(24): e1801038, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29770993

RESUMO

Lithium cobalt oxide nanobatteries offer exciting prospects in the field of nonvolatile memories and neuromorphic circuits. However, the precise underlying resistive switching (RS) mechanism remains a matter of debate in two-terminal cells. Herein, intriguing results, obtained by secondary ion mass spectroscopy (SIMS) 3D imaging, clearly demonstrate that the RS mechanism corresponds to lithium migration toward the outside of the Lix CoO2 layer. These observations are very well correlated with the observed insulator-to-metal transition of the oxide. Besides, smaller device area experimentally yields much faster switching kinetics, which is qualitatively well accounted for by a simple numerical simulation. Write/erase endurance is also highly improved with downscaling - much further than the present cycling life of usual lithium-ion batteries. Hence very attractive possibilities can be envisaged for this class of materials in nanoelectronics.

12.
J Am Chem Soc ; 140(22): 6998-7004, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29733203

RESUMO

Molecular metals have been essentially obtained with tetrathiafulvalene (TTF)-based precursors, either with multicomponent ionic materials or, in a few instances, with single-component systems. In that respect, gold bis(dithiolene) complexes, in their neutral radical state, provide a prototype platform toward such single-component conductors. Herein we report the first single-component molecular metal under ambient pressure derived from such Au complexes without any TTF backbone. This complex exhibits a conductivity of 750 S·cm-1 at 300 K up to 3800 S·cm-1 at 4 K. First-principles electronic structure calculations show that the striking stability of the metallic state finds its origin in sizable internal electron transfer from the SOMO-1 to the SOMO of the complex as well as in substantial interstack and interlayer interactions.

13.
IUCrJ ; 5(Pt 3): 361-372, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29755752

RESUMO

A mixed-valence conducting cation radical salt of the unsymmetrically substituted o-Me2TTF donor molecule (TTF is tetrathiafulvalene) was obtained upon electrocrystallization in the presence of the non-centrosymmetric NO3- anion. It crystallizes at room temperature in the monoclinic P21/c space group, with the anion disordered on an inversion centre. The donor molecules are stacked along the a axis. A 90° rotation of the longest molecular axis of o-Me2TTF generates a chessboard-like structure, preventing lateral S⋯S contacts between stacks and providing a strongly one-dimensional electronic system, as confirmed by overlap interaction energies and band structure calculations. A strong dimerization within the stacks explains the semi-conducting behaviour of the salt, with σroom temp = 3-5 S cm-1 and Eactivated = 0.12-0.14 eV. An X-ray diffuse scattering survey of reciprocal space, combined with full structure resolutions at low temperatures (250, 85 and 20 K), evidenced the succession of two structural transitions: a ferroelastic one with an anion-ordering (AO) process and the establishment of a (0, ½, ½) superstructure below 124 (±3) K, also visible via resistivity thermal dependence, followed by a stack tetramerization with the establishment of a (½, ½, ½) superstructure below 90 (±5) K. The latter ground state is driven by a spin-Peierls (SP) instability, as demonstrated by the temperature dependence of the magnetic susceptibility. Surprisingly, these two kinds of instability appear to be fully decoupled here, at variance with other tetra-methyl-tetra-thia-fulvalene (TMTTF) or tetramethyl-tetra-selena-fulvalene (TMTSF) salts with such non-centrosymmetric counter-ions.

14.
Dalton Trans ; 47(18): 6580-6589, 2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29697125

RESUMO

Neutral nickel bis(dithiolene) complexes, because of their closed-shell character, are usually considered as insulating materials, unless they are formed out of highly delocalized tetrathiafulvalenedithiolate ligands. We describe here an original series of S-alkyl substituted neutral bis(thiazole-4,5-dithiolate) nickel complexes formulated as [Ni(RS-tzdt)2] (R = Me, Et), which organize in the solid state into uniform stacks and exhibit semiconducting behavior, with room temperature conductivities comparable to those reported in the prototypical [Ni(dmit)2] and [Ni(Et-thiazdt)2] neutral complexes. These findings provide new perspectives in the current search for single component molecular conductors.

15.
Chemistry ; 23(63): 16004-16013, 2017 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-28856743

RESUMO

Among single component molecular conductors, neutral radical gold dithiolene complexes [(R-thiazdt)2 Au]. derived from the N-alkyl-1,3-thiazoline-2-thione-4,5-dithiolate (R-thiazdt) ligand provide an extensive series of conducting, non-dimerized, half-filled band systems. Analogues of the known R=isopropyl (iPr) derivative were investigated here with R=NMe2 , cyclopropyl (cPr) and n-propyl (nPr), aiming at rationalizing the different solid state structures adopted by these compounds despite very closely related substituents on the heterocyclic nitrogen atom. An original crisscross organization within dimerized chains is observed with R=NMe2 , differing however from the analogous iPr derivative by a 180° rotation of the heterocyclic nitrogen substituent. On the other hand, the cyclopropyl and n-propyl substituents lead to robust, uniform, non-dimerized chains with a strongly 1 D electronic structure and a formal half-filled electronic structure. The semiconducting behaviour of these two radical complexes is characteristic of a Mott insulator, whose sensitivity to external pressure has been evaluated up to 2.5 GPa.

16.
Inorg Chem ; 56(20): 12564-12571, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-28952741

RESUMO

Radical cation salts composed of a bis(ethylenedithio)tetrathiafulvalene (ET) donor with homo-/heterosubstituted Cl/CN anilic acids as purely organic molecular conducting materials formulated as [BEDT-TTF]2[HClCNAn] (1) and [BEDT-TTF][HCl2An] (2) have been prepared by electrocrystallization. Compounds 1 and 2 crystallized in the monoclinic space group P2/c for 1 and I2/a for 2, showing segregated donor-anion layers arranged in a α'-type donor packing pattern (1) and twisted parallel columns (2), respectively. Single-crystal conductivity measurements show that 1 is a semiconductor with room-temperature conductivity of 10-2 S cm-1 and an activation energy Ea of 1900 K.

17.
Chem Commun (Camb) ; 52(84): 12438-12441, 2016 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-27711330

RESUMO

Control of the structural type in metallic enantiopure and racemic radical cation salts is achieved through hydrogen bonding interactions between the chiral donor DM-EDT-TTF and the XF6 anions (X = P, As, Sb), determined by the anion size and the chiral information.

18.
Inorg Chem ; 55(12): 6036-46, 2016 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-27266960

RESUMO

While the introduction of large, bulky substituents such as tert-butyl, -SiMe3, or -Si(isopropyl)3 has been used recently to control the solid state structures and charge mobility of organic semiconductors, this crystal engineering strategy is usually avoided in molecular metals where a maximized overlap is sought. In order to investigate such steric effects in single component conductors, the ethyl group of the known [Au(Et-thiazdt)2] radical complex has been replaced by an isopropyl one to give a novel single component molecular conductor denoted [Au(iPr-thiazdt)2] (iPr-thiazdt: N-isopropyl-1,3-thiazoline-2-thione-4,5-dithiolate). It exhibits a very original stacked structure of crisscross molecules interacting laterally to give a truly three-dimensional network. This system is weakly conducting at ambient pressure (5 S·cm(-1)), and both transport and optical measurements evidence a slowly decreasing energy gap under applied pressure with a regime change around 1.5 GPa. In contrast with other conducting systems amenable to a metallic state under physical or chemical pressure, the Mott insulating state is stable here up to 4 GPa, a consequence of its peculiar electronic structure.

19.
J Am Chem Soc ; 138(21): 6838-51, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27167919

RESUMO

The first examples of chiral single component conductors are reported. Both (S,S) and (R,R) enantiomers of 5,6-dimethyl-5,6-dihydro-1,4-dithiin-2,3-dithiolate (dm-dddt) ligand have been used to prepare anionic metal bis(dithiolene) complexes formulated as ([(n-Bu)4N][M(dm-dddt)2] (M = Au, Ni), which are isostructural according to single crystal X-ray analysis. Single crystal transport measurements indicate semiconducting behavior for the anionic radical Ni complexes, with low room temperature conductivity values and high activation energies. Electrocrystallization experiments provided neutral [M(dm-dddt)2] (M = Au, Ni) complexes. The neutral radical gold compounds show intermolecular S···S interactions in the solid state giving rise to layers interconnected through weak C-H···S hydrogen bonds. The most peculiar structural feature concerns a dissymmetry between the two dithiolene moieties, while the nickel counterpart is symmetric. Single crystal resistivity measurements show thermally activated behavior for the open-shell gold complexes, with room temperature conductivity values of 0.02-0.04 S·cm(-1) and activation energies strongly influenced by hydrostatic pressure. A thorough theoretical study on nickel anion radical and gold neutral radical bis(dithiolene) complexes applied to the chiral complexes [M(dm-dddt)2] (M = Au, Ni(-)) and to a series of previously reported compounds addressed the issue of symmetry versus asymmetry from an electronic coupling perspective between the two dithiolene ligands. It results that neutral gold complexes with dithiolene ligands without extended delocalization are Class II mixed-valent compounds in the Robin and Day classification, presenting an inherent tendency toward asymmetric structures, which can be however modulated by the intermolecular organization in the solid state.

20.
Chem Commun (Camb) ; 52(2): 308-11, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26512923

RESUMO

The Z and E isomers of the iodinated TTF derivative (Z,E)-Me2I2-TTF co-crystallize in a mixed-valence salt with Br(-) anions, and are segregated into Z and E stacks, each of them with a different charge localization pattern, which also revealed charge-assisted halogen bonding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...